Extensions 1→N→G→Q→1 with N=C23 and Q=C3⋊C8

Direct product G=N×Q with N=C23 and Q=C3⋊C8
dρLabelID
C23×C3⋊C8192C2^3xC3:C8192,1339

Semidirect products G=N:Q with N=C23 and Q=C3⋊C8
extensionφ:Q→Aut NdρLabelID
C23⋊(C3⋊C8) = C2×A4⋊C8φ: C3⋊C8/C4S3 ⊆ Aut C2348C2^3:(C3:C8)192,967
C232(C3⋊C8) = C24.3Dic3φ: C3⋊C8/C6C4 ⊆ Aut C2348C2^3:2(C3:C8)192,84
C233(C3⋊C8) = C2×C12.55D4φ: C3⋊C8/C12C2 ⊆ Aut C2396C2^3:3(C3:C8)192,765

Non-split extensions G=N.Q with N=C23 and Q=C3⋊C8
extensionφ:Q→Aut NdρLabelID
C23.(C3⋊C8) = A4⋊C16φ: C3⋊C8/C4S3 ⊆ Aut C23483C2^3.(C3:C8)192,186
C23.2(C3⋊C8) = C24.D4φ: C3⋊C8/C6C4 ⊆ Aut C23484C2^3.2(C3:C8)192,112
C23.3(C3⋊C8) = C24.98D4φ: C3⋊C8/C12C2 ⊆ Aut C2396C2^3.3(C3:C8)192,108
C23.4(C3⋊C8) = C2×C12.C8φ: C3⋊C8/C12C2 ⊆ Aut C2396C2^3.4(C3:C8)192,656
C23.5(C3⋊C8) = C22×C3⋊C16central extension (φ=1)192C2^3.5(C3:C8)192,655

׿
×
𝔽